

American Institute of Aeronautics and Astronautics

1

Early Infusion of New Planning, Scheduling and Execution
Technology into A Flight Mission

James Kurien* and Mark Drummond†
NASA Ames Research Center, Moffett Field, CA, 94034

Anthony Barrett§ and Sven Grenander‡
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109

This extended abstract describes efforts to infuse new planning and scheduling
technologies into the Mars Science Laboratory Mission (MSL), a NASA Mars rover mission
planned for launch in 2009. Beginning in 2003, we engaged the MSL mission and the
developers of the Mission Data System (MDS). MDS is a software system that at the time
was the MSL software baseline for both the ground and flight system. We briefly describe
the tools that we integrated with MDS, the analysis or experience on previous missions that
suggested each tool, and our successes in integrating these tools into a proof-of-concept
uplink system we demonstrated in late 2004. In 2004, MSL decided to fall back on the very
successful Mars Exploration Rover (MER) mission’s software in order to save development
cost, which has resulted in some re-direction of our on-going activities. We briefly describe
our new work to enhance the MER-based MSL software.

I. Introduction
nfusion of new software technology into flight projects has historically been quite difficult due to the conservative
nature of flight project management. The conservative management stance is driven by the need to succeed in

satisfying the missions’ stated objectives under strict cost and schedule constraints. Traditionally, missions have not
had the luxury of being software technology trailblazers except where some unique mission requirement has forced
new technology to be adopted. The task described in this report was put in place to try to overcome the software
technology infusion hurdle by placing the software technologists in direct contact with a real mission and to a large
extent, at the disposal of the mission.

The Planning, Scheduling and Execution (PS&E) Technology Infusion task has as its charter to do technology
identification, development and adaptation specifically to infuse PS&E technologies developed under “Intelligent
Systems” funding into the Mars Science Laboratory mission. Intelligent Systems is a funding program that now lives
within NASA’s Exploration Systems Mission Directorate (ESMD), and it has invested in a variety of autonomy
technologies that should be useful to a number of human and robotic exploration missions. The personnel on the
task are PS&E technologists who are working within the project on a daily basis to anticipate mission needs and
prepare selected IS developed PS&E technologies so that they can be made available to the MSL mission without
risking either MSL mission development or operations costs or schedules. The task answers to mission PS&E needs
first and foremost, providing solutions only to identified problems, not pushing any specific technology or
technology agenda. It is in the very nature of early project phases to go through major design fluctuations as the
project explores a huge trade-space to find the best combination of tools, procedures, technologies etc. to meet the
mission objectives. This task has been part of that trade-space exploration, both helping identify trades and having to
adjust to changes in plans as trade-space options were chosen or discarded.

The rest of this paper describes the current state of the PS&E technology evaluation, selection and infusion
process. The paper shows that the infusion team has been able to stay committed to its charter and has had a positive
influence on the mission and is poised to stay with the mission through development and hand-off into flight. It is
expected that this task will serve as a model for future well considered technology infusion tasks and that it will at

* NASA Ames Principal Investigator, Computational Sciences Division, MS 269-4.
† NASA Ames Task Manager, Computational Sciences Division, MS 269-1.
§ JPL Principal Investigator, Planning and Execution Section, MS 126-347.
‡ JPL Task Manager, Planning and Execution Section, MS 301-285.

I

American Institute of Aeronautics and Astronautics

2

least partially address what has been a long standing problem in NASA software technology adoption for mission
use.

II. The Infused Technologies
Figure 1 illustrates the tools we chose to

integrate with MDS. It also illustrates the
relationship of these tools to MDS’ abilities to
generate a flexible plan from a set of goals (as
indicated by the Ground MDS box) and to execute
a flexible plan on-board a rover (as indicated by
the Flight MDS box). A goal editor allows the user
to graphically choreograph high level rover
activities such as driving and picture taking. The
goals for the rover are then supplied to MDS,
which elaborates them into a more detailed plan
for coordinating the various subsystems of the
rover to achieve the goals. This plan is temporally
flexible, in that it need not specify fixed times for
each activity in the plan. Instead, it contains more
general specifications of how the activities in a
plan should be ordered, such as legal time ranges
for the start of an activity or relationships between
the start and end times of different activities.
Before sending the flexible plan to the instance of
MDS operating on the rover, we must determine if
the plan is an acceptable implementation of our goals for the rover. To assist in this determination, we first
integrated a timeline visualization tool. This allows operators to view the flexible plan as a traditional fixed-time
sequence of activities. In order to enable operators to gain an understanding of how the plan was likely to behave
given uncertainty about the rover and its environment, we integrated a Monte Carlo evaluation system that
automatically simulates and summarizes a large number of executions of the plan under a wide variety of possible
operating conditions. If the plan generated by MDS was not accepted by the operator, the first course of action is to
adjust the goals given to MDS. This puts the user in the situation, common to all automated planning systems, of
having to determine why the original goals did not result in a desirable plan. We therefore integrated an inspection
system that allows the user to explore how MDS generated a flexible plan from the goals and why some more
desirable plan was not produced. Each of these tools is described in more detail below. We also performed
significant computational benchmarking of the MDS system, which is not discussed further here (but details are
available upon request from the authors).

A. Goal Editor

Figure 2 shows the goal editor, which allows the

user to graphically select and choreograph high level
rover activities. Operation of a spacecraft at JPL
typically involves an activity dictionary, which defines
the validated activities that an operator may perform
with the spacecraft. The left-most panel of the goal
editor contains a list of parameterized activities that
may be selected for the rover. In this example, they are
high level goals such as transitioning to a new position
relative to rover’s current position, or taking an image.
Parameters include the position to be achieved and
which of several cameras to be used, respectively. The
right side of the editor is a canvas upon which activities
are arranged. Here we see two Transitioning_To goals
that will move the rover. Rather than specifying the

Figure 2: The goal editor

Figure 1: The demonstration system

Changes

Goals

Monte Carlo
 Evaluation

Inspector

Visualization

Flexible
Plan

Ground
MDS

Goal
Editor

Benchmarks

Accept?

Flight
MDS

American Institute of Aeronautics and Astronautics

3

exact times that each movement will begin, and risk the plan failing if the first drive takes longer than expected,
MDS allows us to specify the timing or simply the ordering of activities with constraints. To ensure the second
movement starts as soon as the first completes, but no sooner, we constrain the second Transitioning_To goal to
begin at the same point in time where the first Transitioning_To ends. On the editor canvas, this common point in
time is the circle labeled TP2, and the arrows around TP2 represent the constraints on the goal start and end times.
The goal editor allows us to graphically specify and visualize temporal constraints between the activities we have
chosen for the rover. The editor then submits our goals to MDS. MDS elaborates each high level goal, such as
transitioning the rover to a new position, into a set of lower-level activities that cause the rover to implement that
goal. This elaboration process results in a much larger and more detailed set of activities and a much larger set of
temporal constraints specifying the legal times at which each may start.

B. Timeline visualization

Ensuring that an elaborated set of goals will execute as

human operators intend involves inspecting those goals
using a timeline visualizer like the one shown in Figure 3.
From top to bottom, this visualizer consists of a header
with a time scale, a set of intervals associated with
elaborated goals, and a set of constraints on different state
variables representing spacecraft features. This GUI was
adapted from the ASPEN1 display in order to support
visualization of arbitrary constraints from the grayed-out
unconstrained variable to the textual description and the
magenta lines denoting constraints to maintain knowledge
of a state variable’s value.

For instance, the bottom row denotes constraints on a
sun sensor state variable. Since neither of the
Transitioning_To goals elaborates to add a constraint on
the sun sensor, this state variable has no constraints – resulting in it being completely grayed-out. The next row up
denotes the position&heading state variable, which has the original two Transitioning_To goals. These goals
elaborate into simultaneous goals on the rover’s 6 wheels, and the rows displayed above the position&heading state
variable denote the low-level goals on the right rear wheel driving and steering motors. Finally, for display purposes
the GUI shows the earliest possible times that given constraints can start holding.

C. Monte Carlo Evaluation
The timeline visualization of a plan allows us to view one possible execution of a temporally flexible plan.
However, due to the flexible nature of the plan and the inherent uncertainty about the conditions under which it will
execute, we don’t know exactly how it will cause a rover to behave on Mars. Monte Carlo evaluation of a
temporally flexible plan helps us to estimate what the likely or worst case behavior of a plan will be, given some
bounds on the conditions under which it will execute. We believe this will allow rover operators to better
understand how a plan is likely to behave, and to adjust it accordingly or explore alternatives.

Consider the simple scenario shown in
Figure 4. As shown in the images in
the top of the figure, we would like
the rover to turn 90 degrees, drive
forward 3 meters, and take a series of
images. The graph below indicates
the amount of energy in the rover’s
batteries as execution of the plan
progresses. This graph is meant to be
suggestive rather than indicative of
real values from any specific rover
mission. The initial energy stored in
the battery comes from allowing the
rover to nap, that is to not perform any

E
nergy

Turn Drive Imaging

Time

Figure 3: The timeline visualizer

Figure 4: A simple rover scenario with energy usage

American Institute of Aeronautics and Astronautics

4

activities, while the solar panels charge the batteries. The energy level at the end of the plan is determined by factors
such as how long the drive takes and the power usage over time by the wheel motors on the particular terrain the
rover encounters. The energy level must remain above some safe threshold during execution of the plan, or the plan
will be aborted.

Suppose we would like to know how much energy the rover should store up during its nap in order to ensure that the
plan completes with a safe amount of energy in reserve. We might also ask, if our estimates of how much power
the wheel motors will require is off by 10%, does that significantly impact the likelihood the plan will succeed?
Since scientists will be trying to squeeze as many competing science tasks onto the rover as possible, we may also
ask about the abort probability of the last image we plan to take. This image-taking activity may be aborted for lack
of energy if we squeeze the rover’s napping period a small amount in order to accommodate other actions earlier in
the day.

The graph in Figure 5 illustrates how Monte Carlo simulation helps us to answer these types of analysis questions.
The graph shows the initial energy stored before executing the simple scenario versus the estimated percentage of
plans run with that initial energy that would complete their execution. Each column was generated by running 200
simulations of the plan with the specified initial energy. Each run chooses duration and power usage for each
activity within a 10% standard deviation. This is the basis of all Monte Carlo simulation systems: analysis of
multiple simulations of a system with variations chosen from a statistical model of the system’s behavior. We can
use these simulations not only to estimate how likely a plan is to complete, but to record where in its execution each
simulated run of the plan fails. This allows us to explore, for example, how many of the images at the end of this
plan are likely to be taken given a certain energy budget.

The particular Monte Carlo simulation system we
have integrated with MDS was originally a
component of the PICo2 planning system. In
addition to temporal and power variations, it can
simulate other resources and inject failures into the
simulated runs. Through a file format adapter, it
reads in a plan generated by MDS and converts it
into a high level simulation. This is not a physical
simulation of the rover. Conceptually, the
simulation bookkeeps which activities must be
completed before subsequent activities start, and
how much energy has been used. Nominal values
for activity durations, power usage and the like can
specified by engineers, determined from a high
level simulation, or even measured on a test bed.
The range of variation in these parameters that’s of
interest for simulation is then provided by the user.

D. PlanWorks
PlanWorks3 allows a software developer or rover operator to understand how a flexible plan was generated by

the planner within MDS, or other planners. It can also reveal why a planner was unable to develop a plan for a set
of goals. PlanWorks captures the planning and scheduling decisions made by the planner, such as which lower-level
activities a high level goal will be decomposed into, and what temporal constraints or fixed execution times will be
assigned to those activities. All of this information is then stored in an SQL database which can be queried to
understand the process by which the planner developed the plan. PlanWorks also supplies a set of specialized tools
for graphically exploring the planning process. For example, if the elaboration process in MDS was unable to
generate a plan, one could view all of the goals that attempt to control the same property of the rover, such as its
position. This would allow us to see, for example, if a mistake in our high level goals forced a drive activity of the
rover to overlap with the stationary picture taking activity, which is not allowed. We can use PlanWorks during
development time to investigate whether a planner is implemented correctly, or during operations to determine
whether the goals we have set forth are correct for the plan we are expecting to receive in return.

Time
0

3

35

84

98 100

0

20

40

60

80

100

120

8500 9000 9500 10000 10500 11000

Initial Energy (watt-secs)

%
 S

u
cc

es
s

Figure 5: Initial energy vs. percentage succeeding

American Institute of Aeronautics and Astronautics

5

III. Summary and Conclusion

In 2004, we created a connection to the MSL mission and the MDS software development team. We

demonstrated that it is possible to infuse new technology into a mission’s software baseline in a way that is
minimally disruptive and quickly yields a proof of concept demonstration. Our demonstration illustrates four
different views of the mission tactical activity planning process. These views focus on high level goals, flexible
plans viewed as sequences, flexible plans viewed as descriptions of likely behavior, and a database of planner
decisions, respectively. In this demo assembled over the course of six months, each of these views is implemented
by a separate tool which is not well integrated with the others. To deploy these tools in an operational context, we
would work to re-factor these tools into a set of components that can work together, and which interact with MDS
through a unified API.

As 2005 approaches, MSL has adopted the software from the very successful MER mission as its baseline. The

MER planning, sequence generation and uplink software contains functionality similar to that described above. It
includes tools that perform automated or semi-automated planning, editors that allow users to specify temporal
constraints between, and so on. To an even greater extent than the MDS demonstration described here, the MER
uplink software consists of many tools, resulting in multiple user interfaces for similar tasks, replicated functionality
across tools, and multiple representations for the same information about the rover or the plan.

The MSL mission’s software priority is containment of development costs, followed by capability improvements

that focus on cost or risk reduction during development or mission operations. Given our charter to maintain an
MSL mission focus, our task for 2005 is to aid the mission in unifying the many MER tools, interfaces and models
to reduce the cost of developing and maintaining an MSL-adapted version of the software. The MER uplink system
has done an excellent job. With the benefit of additional time, lessons learned, and some techniques from the
Intelligent Systems program, we will work to demonstrate that the MER uplink software can be affordably and
incrementally re-factored in a way that allows tools to share the same models, UI components, and implementation
of common functionality. We hope to demonstrate that the result can be lower costs for adapting the system to the
specifics of the MSL mission, and a greater ability to add or modify features late in development of the mission, as
is usually required. We will work with teams both inside and outside MSL that are maintaining or revising the tools
used in the MER uplink system to develop an integrated, proof-of-concept demo in 2005.

Figure 6: A more integrated environment for operations.

Flight
MDS Ground

MDS

Flexible
Plan

American Institute of Aeronautics and Astronautics

6

Acknowledgments
This project was funded by the NASA Intelligent Systems program, now part of the Exploration Systems

Mission Directorate at NASA Headquarters. In addition to the authors, this work was performed by George
Stebbins at JPL, Kevin Greene and David Roland at NASA Ames Research Center, and Othar Hansson and Jordan
Hayes of Thinkbank. The goal editor was developed by Alan Tomotsugu and Ted Shab at NASA Ames Research
Center. This project could not have even begun without the assistance of the MDS development team. We
especially thank Matthew Bennett, Michel Ingham, Robert Keller, Russell Knight, Richard Morris, Alex Murray,
Robert Rasmussen, Mohammad Shahabuddin, I-hsiang Shu, Lin Song, and David Wagner. We would also like to
acknowledge the support of the MSL project.

References
 1 S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett, G.

Stebbins, D. Tran , "ASPEN - Automating Space Mission Operations using Automated Planning and Scheduling," SpaceOps
2000, Toulouse, France, June 2000.

2 Bresina, J., Dearden, R., Meuleau, N. Ramakrishnan, S., Smith, D. E., and Washington, R., “Planning under continuous
time and uncertainty: A challenge for AI,” Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann, San Francisco, CA, 2002, pp. 77-94.

3 PlanWorks, Software Package, Ver. Milestone 15. NASA Ames Research Center Computational Sciences Division, Moffett
Field, CA, 2004.

.

